Abad S, Kitz K, Hörmann A, Schreiner U, Hartner FS, Glieder A. Real-time PCR-based determination of gene copy numbers in Pichia pastoris. Biotechnol J Healthc Nutr Technol. 2010;5(4):413–20.
CAS
Google Scholar
Barlowe CK, Miller EA. Secretory protein biogenesis and traffic in the early secretory pathway. Genetics. 2013;193(2):383–410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrero JJ, Casler JC, Valero F, Ferrer P, Glick BS. An improved secretion signal enhances the secretion of model proteins from Pichia pastoris. Microb Cell Fact. 2018;17(1):161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berkmen M, Boyd D, Beckwith J. The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J Biol Chem. 2005;280(12):11387–94.
Article
CAS
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
Article
CAS
PubMed
Google Scholar
Cámara E, Albiol J, Ferrer P. Droplet digital PCR-aided screening and characterization of Pichia pastoris multiple gene copy strains. Biotechnol Bioeng. 2016;113(7):1542–51.
Article
PubMed
CAS
Google Scholar
Chahal S, Wei P, Moua P, Park SPJ, Kwon J, Patel A, Vu AT, Catolico JA, Tsai YFT, Shaheen N. Structural characterization of the α-mating factor prepro-peptide for secretion of recombinant proteins in Pichia pastoris. Gene. 2017;598:50–62.
Article
CAS
PubMed
Google Scholar
Cowieson A, Acamovic T, Bedford M. Phytic acid and phytase: implications for protein utilization by poultry. Poult Sci. 2006;85(5):878–85.
Article
CAS
PubMed
Google Scholar
Cowieson A, Bedford M, Selle P, Ravindran V. Phytate and microbial phytase: implications for endogenous nitrogen losses and nutrient availability. Worlds Poult Sci J. 2009;65(3):401–18.
Article
Google Scholar
Damasceno LM, Anderson KA, Ritter G, Cregg JM, Old LJ, Batt CA. Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Appl Microbiol Biotechnol. 2007;74(2):381–9.
Article
CAS
PubMed
Google Scholar
De Maria L, Skov L, Skjoet M. Thermostable phytase variants. 2013. US 2013/0017185.
Delic M, Rebnegger C, Wanka F, Puxbaum V, Haberhauer-Troyer C, Hann S, Köllensperger G, Mattanovich D, Gasser B. Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radic Biol Med. 2012;52(9):2000–12.
Article
CAS
PubMed
Google Scholar
Dersjant-Li Y, Awati A, Schulze H, Partridge G. Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric. 2015;95(5):878–96.
Article
CAS
PubMed
Google Scholar
EFSA. Safety and efficacy of the product QuantumTM Phytase 5000 L and QuantumTM Phytase 2500 D (6-phytase) as a feed additive for chickens for fattening, laying hens, turkeys for fattening, ducks for fattening and piglets (weaned). EFSA J. 2008;627:1–27.
Google Scholar
Engelen AJ, Van Der Heeft FC, Randsdorp PH, Smtt EL. Simple and rapid determination of phytase activity. J AOAC Int. 1994;77(3):760–4.
Article
CAS
PubMed
Google Scholar
Fass D. Disulfide bonding in protein biophysics. Annu Rev Biophys. 2012;41:63–79.
Article
CAS
PubMed
Google Scholar
Fei B, Xu H, Cao Y, Ma S, Guo H, Song T, Qiao D, Cao Y. A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. J Ind Microbiol Biotechnol. 2013;40(5):457–64.
Article
CAS
PubMed
Google Scholar
Fitzgerald I, Glick BS. Secretion of a foreign protein from budding yeasts is enhanced by cotranslational translocation and by suppression of vacuolar targeting. Microb Cell Fact. 2014;13(1):125.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garrett JB, Kretz KA, O’Donoghue E, Kerovuo J, Kim W, Barton NR, Hazlewood GP, Short JM, Robertson DE, Gray KA. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl Environ Microbiol. 2004;70(5):3041–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D. Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol. 2007;73(20):6499–507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gemmill TR, Trimble RB. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta (BBA). 1999;1426(2):227–37.
Article
CAS
Google Scholar
Guerfal M, Ryckaert S, Jacobs PP, Ameloot P, Van Craenenbroeck K, Derycke R, Callewaert N. The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Fact. 2010;9(1):49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Han C, Wang Q, Sun Y, Yang R, Liu M, Wang S, Liu Y, Zhou L, Li D. Improvement of the catalytic activity and thermostability of a hyperthermostable endoglucanase by optimizing N-glycosylation sites. Biotechnol Biofuels. 2020;13(1):1–11.
Article
CAS
Google Scholar
Han Y, Lei XG. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochem Biophys. 1999;364(1):83–90.
Article
CAS
PubMed
Google Scholar
Hashizume K, Cheng Y-S, Hutton JL, C-h C, Carr CM. Yeast Sec1p functions before and after vesicle docking. Mol Biol Cell. 2009;20(22):4673–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heinonen JK, Lahti RJ. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem. 1981;113(2):313–7.
Article
CAS
PubMed
Google Scholar
Huang J, Zhao Q, Chen L, Zhang C, Bu W, Zhang X, Zhang K, Yang Z. Improved production of recombinant Rhizomucor miehei lipase by coexpressing protein folding chaperones in Pichia pastoris, which triggered ER stress. Bioengineered. 2020;11(1):375–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inan M, Aryasomayajula D, Sinha J, Meagher MM. Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol Bioeng. 2006;93(4):771–8.
Article
CAS
PubMed
Google Scholar
Kim M-S, Weaver JD, Lei XG. Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase. Appl Microbiol Biotechnol. 2008;79(5):751.
Article
CAS
PubMed
Google Scholar
Lanahan ML, Koepf E and Kretz K. Microbially expressed thermotolerant phytase for animal feed. 2006. US 7,135,323 B2.
Lei XG, Weaver JD, Mullaney E, Ullah AH, Azain MJ. Phytase, a new life for an “old” enzyme. Annu Rev Anim Biosci. 2013;1(1):283–309.
Article
PubMed
CAS
Google Scholar
Lim D, Golovan S, Forsberg CW, Jia Z. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Biol. 2000;7(2):108–13.
Article
CAS
PubMed
Google Scholar
Lin-Cereghino J, Wong WW, Xiong S, Giang W, Luong LT, Vu J, Johnson SD, Lin-Cereghino GP. Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. Biotechniques. 2005;38(1):44–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malsam J, Kreye S, Söllner T. Membrane fusion: SNAREs and regulation. Cell Mol Life Sci. 2008;65(18):2814–32.
Article
CAS
PubMed
Google Scholar
Mukaiyama H, Tohda H, Takegawa K. Overexpression of protein disulfide isomerases enhances secretion of recombinant human transferrin in Schizosaccharomyces pombe. Appl Microbiol Biotechnol. 2010;86(4):1135–43.
Article
CAS
PubMed
Google Scholar
Mullaney EJ, Locovare H, Sethumadhavan K, Boone S, Lei XG, Ullah AH. Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL 3135 phytase (PhyA), their expression in Pichia pastoris and catalytic characterization. Appl Microbiol Biotechnol. 2010;87(4):1367–72.
Article
CAS
PubMed
Google Scholar
Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE. 2012;7(6):e39720.
Article
PubMed
PubMed Central
CAS
Google Scholar
Navone L, Vogl T, Luangthongkam P, Blinco J-A, Luna-Flores C, Chen X, von Hellens J, Speight R. Synergistic optimisation of expression, folding, and secretion improves E. coli AppA phytase production in Pichia pastoris. Microb Cell Fact. 2021;20(1):1–14.
Article
CAS
Google Scholar
Niu C, Yang P, Luo H, Huang H, Wang Y, Yao B. Engineering the residual side chains of HAP phytases to improve their pepsin resistance and catalytic efficiency. Sci Rep. 2017;7:42133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nørgaard P, Westphal V, Tachibana C, Alsøe L, Holst B, Winther JR. Functional differences in yeast protein disulfide isomerases. J Cell Biol. 2001;152(3):553–62.
Article
PubMed
PubMed Central
Google Scholar
Nørgaard P, Winther JR. Mutation of yeast Eug1p CXXS active sites to CXXC results in a dramatic increase in protein disulphide isomerase activity. Biochem J. 2001;358(1):269–74.
Article
PubMed
PubMed Central
Google Scholar
Otte S, Barlowe C. Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles. Nat Cell Biol. 2004;6(12):1189–94.
Article
CAS
PubMed
Google Scholar
Puxbaum V, Mattanovich D, Gasser B. Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Appl Microbiol Biotechnol. 2015;99(7):2925–38.
Article
CAS
PubMed
Google Scholar
Rebello S, Jose L, Sindhu R, Aneesh EM. Molecular advancements in the development of thermostable phytases. Appl Microbiol Biotechnol. 2017;101(7):2677–89.
Article
CAS
PubMed
Google Scholar
Robinson AS, Hines V, Wittrup KD. Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Bio/Technology. 1994;12(4):381–4.
Article
CAS
Google Scholar
Rodriguez E, Wood ZA, Karplus PA, Lei XG. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys. 2000;382(1):105–12.
Article
CAS
PubMed
Google Scholar
Shental-Bechor D, Levy Y. Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. PNAS. 2008;105(24):8256–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shental-Bechor D, Levy Y. Folding of glycoproteins: toward understanding the biophysics of the glycosylation code. Curr Opin Struct Biol. 2009;19(5):524–33.
Article
CAS
PubMed
Google Scholar
Shivange AV, Dennig A, Schwaneberg U. Multi-site saturation by OmniChange yields a pH-and thermally improved phytase. J Biotechnol. 2014;170:68–72.
Article
CAS
PubMed
Google Scholar
Shivange AV, Schwaneberg U. Recent advances in directed phytase evolution and rational phytase engineering. In: Directed enzyme evolution: advances and applications. Cham: Springer; 2017. p. 145–72.
Chapter
Google Scholar
Short JM, Gray KA, Barton NR, Garrett JB, O'Donoghue E, Robertson DE. Phytases and methods for making and using them. 2008. US 7432098 B2.
Shusta EV, Raines RT, Plückthun A, Wittrup KD. Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol. 1998;16(8):773.
Article
CAS
PubMed
Google Scholar
Tomschy A, Brugger R, Lehmann M, Svendsen A, Vogel K, Kostrewa D, Lassen SF, Burger D, Kronenberger A, van Loon AP. Engineering of phytase for improved activity at low pH. Appl Environ Microbiol. 2002;68(4):1907–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran TT, Mamo G, Búxo L, Le NN, Gaber Y, Mattiasson B, Hatti-Kaul R. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu. Enzyme Microb Technol. 2011;49(2):177–82.
Article
CAS
PubMed
Google Scholar
Tsygankov M, Padkina M. Influence of PDI gene overexpression on the production of heterologous proteins in yeast Pichia pastoris. Russ J Genet Appl Res. 2018;8(2):197–205.
Article
CAS
Google Scholar
Vogl T, Fischer JE, Hyden P, Wasmayer R, Sturmberger L, Glieder A. Orthologous promoters from related methylotrophic yeasts surpass expression of endogenous promoters of Pichia pastoris. AMB Express. 2020;10(1):1–9.
Article
CAS
Google Scholar
Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler E-M, Baumschlager A, Fischer JE, Hyden P. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat Commun. 2018;9(1):3589.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang C, Eufemi M, Turano C, Giartosio A. Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry. 1996;35(23):7299–307.
Article
CAS
PubMed
Google Scholar
Weis R, Luiten R, Skranc W, Schwab H, Wubbolts M, Glieder A. Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena. FEMS Yeast Res. 2004;5(2):179–89.
Article
CAS
PubMed
Google Scholar
Xu P, Raden D, Doyle FJ III, Robinson AS. Analysis of unfolded protein response during single-chain antibody expression in Saccaromyces cerevisiae reveals different roles for BiP and PDI in folding. Metab Eng. 2005;7(4):269–79.
Article
CAS
PubMed
Google Scholar
Yang H, Liu L, Li J, Chen J, Du G. Rational design to improve protein thermostability: recent advances and prospects. ChemBioEng Rev. 2015;2(2):87–94.
Article
CAS
Google Scholar
Yao M-Z, Wang X, Wang W, Fu Y-J, Liang A-H. Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnol Lett. 2013;35(10):1669–76.
Article
CAS
PubMed
Google Scholar
Yennamalli RM, Rader AJ, Kenny AJ, Wolt JD, Sen TZ. Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels. 2013;6(1):1–9.
Article
CAS
Google Scholar
Zhang W, Hl Z, Xue C, Xiong Xh, Xq Y, Xy Li, Hp C, Zm L. Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins. Biotechnol Prog. 2006;22(4):1090–5.
Article
CAS
PubMed
Google Scholar
Zhang Z, Yang J, Xie P, Gao Y, Bai J, Zhang C, Liu L, Wang Q, Gao X. Characterization of a thermostable phytase from Bacillus licheniformis WHU and further stabilization of the enzyme through disulfide bond engineering. Enzyme Microb Technol. 2020;142:109679.
Article
CAS
PubMed
Google Scholar
Zhao Q, Liu H, Zhang Y, Zhang Y. Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. J Biosci Bioeng. 2010;110(6):638–45.
Article
CAS
PubMed
Google Scholar