Jørgensen H, Kristensen JB, Felby C: Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioproducts Biorefining. 2007, 1: 119-134. 10.1002/bbb.4.
Article
Google Scholar
Zhang YHP, Lynd LR: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng. 2004, 88: 797-824. 10.1002/bit.20282.
Article
CAS
Google Scholar
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005, 96: 673-686. 10.1016/j.biortech.2004.06.025.
Article
CAS
Google Scholar
Kumar R, Wyman CE: Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng. 2009, 102: 457-467. 10.1002/bit.22068.
Article
CAS
Google Scholar
Qing Q, Wyman CE: Hydrolysis of different chain length xylooliogmers by cellulase and hemicellulase. Bioresour Technol. 2011, 102: 1359-1366. 10.1016/j.biortech.2010.09.001.
Article
CAS
Google Scholar
Qing Q, Yang B, Wyman CE: Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol. 2010, 101: 9624-9630. 10.1016/j.biortech.2010.06.137.
Article
CAS
Google Scholar
Qing Q, Wyman C: Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels. 2011, 4: 18-10.1186/1754-6834-4-18.
Article
CAS
Google Scholar
Kipper K, Väljamäe P, Johansson G: Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates. Biochem J. 2005, 385: 527-535. 10.1042/BJ20041144.
Article
CAS
Google Scholar
Praestgaard E, Elmerdahl J, Murphy L, Nymand S, McFarland KC, Borch K, Westh P: A kinetic model for the burst phase of processive cellulases. FEBS J. 2011, 278: 1547-1560. 10.1111/j.1742-4658.2011.08078.x.
Article
CAS
Google Scholar
Väljamäe P, Kipper K, Pettersson G, Johansson G: Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics. Biotechnol Bioeng. 2003, 84: 254-257. 10.1002/bit.10775.
Article
Google Scholar
Kurasin M, Väljamäe P: Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem. 2011, 286: 169-177. 10.1074/jbc.M110.161059.
Article
CAS
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009, D233-D238. 37 Database
Divne C, Ståhlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JKC, Teeri TT, Jones TA: The 3-dimensional crystal structure of the catalytic core of cellobiohydrolase-1 from Trichoderma reesei. Science. 1994, 265: 524-528. 10.1126/science.8036495.
Article
CAS
Google Scholar
von Ossowski I, Ståhlberg J, Koivula A, Piens K, Becker D, Boer H, Harle R, Harris M, Divne C, Mahdi S, Zhao Y, Driguez H, Claeyssens M, Sinnott ML, Teeri TT: Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A: a comparison with Phanerochaete chrysosporium Cel7D. J Mol Biol. 2003, 333: 817-829. 10.1016/S0022-2836(03)00881-7.
Article
CAS
Google Scholar
Deshpande MV, Eriksson KE, Pettersson LG: An assay for selective determination of exo-1,4,-β-glucanases in a mixture of cellulolytic enzymes. Anal Biochem. 1984, 138: 481-487. 10.1016/0003-2697(84)90843-1.
Article
CAS
Google Scholar
Jalak J, Väljamäe P: Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng. 2010, 106: 871-883. 10.1002/bit.22779.
Article
CAS
Google Scholar
Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L: A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expr Purif. 2009, 67: 61-69. 10.1016/j.pep.2008.05.022.
Article
CAS
Google Scholar
Yoon JJ, Kim KY, Cha CJ: Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J Microbiol. 2008, 46: 51-55. 10.1007/s12275-007-0230-4.
Article
CAS
Google Scholar
Zanoelo FF, Polizeli M, Terenzi HF, Jorge JA: β-glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett. 2004, 240: 137-143. 10.1016/j.femsle.2004.09.021.
Article
CAS
Google Scholar
Teeri TT: Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 1997, 15: 160-167. 10.1016/S0167-7799(97)01032-9.
Article
Google Scholar
Gruno M, Väljamäe P, Pettersson G, Johansson G: Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng. 2004, 86: 503-511. 10.1002/bit.10838.
Article
CAS
Google Scholar
Murashima K, Kosugi A, Doi RH: Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans. J Bacteriol. 2002, 184: 5088-5095. 10.1128/JB.184.18.5088-5095.2002.
Article
CAS
Google Scholar
Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR: Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol. 2008, 99: 4997-5005. 10.1016/j.biortech.2007.09.064.
Article
CAS
Google Scholar
Baumann MJ, Murphy L, Lei N, Krogh KB, Borch K, Westh P: Advantages of isothermal titration calorimetry for xylanase kinetics in comparison to chemical-reducing-end assays. Anal Biochem. 410: 19-26.