Balat M, Balat H: Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy. 2009, 86: 2273-2282. 10.1016/j.apenergy.2009.03.015.
Article
CAS
Google Scholar
Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC: A bottom-up assessment and review of global bio-energy potentials to 2050. Progress in Energy and Combustion Science. 2007, 33: 56-106. 10.1016/j.pecs.2006.08.001.
Article
CAS
Google Scholar
Mussatto SI, Dragone G, Guimaraes PM, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA: Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv. 2010, 28: 817-830. 10.1016/j.biotechadv.2010.07.001.
Article
CAS
Google Scholar
Erdei B, Barta Z, Sipos B, Reczey K, Galbe M, Zacchi G: Ethanol production from mixtures of wheat straw and wheat meal. Biotechnol Biofuels. 2010, 3: 16-10.1186/1754-6834-3-16.
Article
Google Scholar
Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F: New improvements for lignocellulosic ethanol. Curr Opin Biotechnol. 2009, 20: 372-380. 10.1016/j.copbio.2009.05.009.
Article
CAS
Google Scholar
Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007, 82: 340-349. 10.1002/jctb.1676.
Article
CAS
Google Scholar
Heer D, Sauer U: Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol. 2008, 1: 497-506. 10.1111/j.1751-7915.2008.00050.x.
Article
CAS
Google Scholar
van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT: Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek. 2006, 90: 391-418. 10.1007/s10482-006-9085-7.
Article
Google Scholar
Liu ZL: Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol. 2011, 90: 809-825. 10.1007/s00253-011-3167-9.
Article
CAS
Google Scholar
Geddes CC, Nieves IU, Ingram LO: Advances in ethanol production. Curr Opin Biotechnol. 2011, 22 (3): 312-319. 10.1016/j.copbio.2011.04.012.
Article
CAS
Google Scholar
Teixeira MC, Mira NP, Sa-Correia I: A genome-wide perspective on the response and tolerance to food-relevant stresses in Saccharomyces cerevisiae. Curr Opin Biotechnol. 2011, 22 (2): 150-156. 10.1016/j.copbio.2010.10.011.
Article
CAS
Google Scholar
Wang FQ, Gao CJ, Yang CY, Xu P: Optimization of an ethanol production medium in very high gravity fermentation. Biotechnol Lett. 2007, 29: 233-236. 10.1007/s10529-006-9220-6.
Article
CAS
Google Scholar
Gibson BR, Lawrence FM, Leclaire JPR, Powell CD, Smart KA: Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev. 2007, 31: 535-569. 10.1111/j.1574-6976.2007.00076.x.
Article
CAS
Google Scholar
Mira NP, Teixeira MC, Sa-Correia I: Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS. 2010, 14: 525-540. 10.1089/omi.2010.0072.
Article
CAS
Google Scholar
Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sá-Correia I: Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol. 2009, 75: 5761-5772. 10.1128/AEM.00845-09.
Article
CAS
Google Scholar
Teixeira MC, Raposo LR, Palma M, Sa-Correia I: Identification of genes required for maximal tolerance to high-glucose concentrations, as those present in industrial alcoholic fermentation media, through a chemogenomics approach. OMICS. 2010, 14: 201-210. 10.1089/omi.2009.0149.
Article
CAS
Google Scholar
Mira NP, Palma M, Guerreiro JF, Sa-Correia I: Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact. 2010, 9: 79-10.1186/1475-2859-9-79.
Article
Google Scholar
Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J: Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol Biofuels. 2008, 1: 3-10.1186/1754-6834-1-3.
Article
Google Scholar
Gorsich S, Dien B, Nichols N, Slininger P, Liu Z, Skory C: Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1 , GND1 , RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microb Biotechnol. 2006, 71: 339-349. 10.1007/s00253-005-0142-3.
Article
CAS
Google Scholar
Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H: The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res. 2006, 6: 744-750. 10.1111/j.1567-1364.2006.00040.x.
Article
CAS
Google Scholar
Kawahata M, Masaki K, Fujii T, Iefujii H: Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006, 6: 924-936. 10.1111/j.1567-1364.2006.00089.x.
Article
CAS
Google Scholar
van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A: Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast. 2006, 23: 351-359. 10.1002/yea.1359.
Article
CAS
Google Scholar
Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H: Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res. 2009, 9: 32-44. 10.1111/j.1567-1364.2008.00456.x.
Article
CAS
Google Scholar
Ruiz HA, Ruzene DS, Silva DP, da Silva FF, Vicente AA, Teixeira JA: Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl Biochem Biotechnol. 2011, 164: 629-641. 10.1007/s12010-011-9163-9.
Article
CAS
Google Scholar
Martin C, Jonsson LJ: Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microbial Technology. 2003, 32: 386-395. 10.1016/S0141-0229(02)00310-1.
Article
CAS
Google Scholar
Keating JD, Panganiban C, Mansfield SD: Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng. 2006, 93: 1196-1206. 10.1002/bit.20838.
Article
CAS
Google Scholar
Albers E, Larsson C: A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol. 2009, 36: 1085-1091. 10.1007/s10295-009-0592-1.
Article
CAS
Google Scholar
Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJ: Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res. 2008, 8: 35-52. 10.1111/j.1567-1364.2007.00338.x.
Article
CAS
Google Scholar
Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G: Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006, 314: 1565-1568. 10.1126/science.1131969.
Article
CAS
Google Scholar
Li BZ, Cheng JS, Qiao B, Yuan YJ: Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. J Ind Microbiol Biotechnol. 2010, 37: 43-55. 10.1007/s10295-009-0646-4.
Article
Google Scholar
Pham TK, Wright PC: The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. J Proteome Res. 2008, 7: 4766-4774. 10.1021/pr800331s.
Article
CAS
Google Scholar
Berry DB, Gasch AP: Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell. 2008, 19: 4580-4587. 10.1091/mbc.E07-07-0680.
Article
CAS
Google Scholar
Smardon AM, Tarsio M, Kane PM: The RAVE complex is essential for stable assembly of the yeast V-ATPase. J Biol Chem. 2002, 277: 13831-13839. 10.1074/jbc.M200682200.
Article
CAS
Google Scholar
Carmelo V, Santos H, Sá-Correia I: Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta. 1997, 1325: 63-70. 10.1016/S0005-2736(96)00245-3.
Article
CAS
Google Scholar
Rossignol T, Dulau L, Julien A, Blondin B: Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast. 2003, 20: 1369-1385. 10.1002/yea.1046.
Article
CAS
Google Scholar
Swan TM, Watson K: Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol Lett. 1998, 169: 191-197. 10.1111/j.1574-6968.1998.tb13317.x.
Article
CAS
Google Scholar
Alexandre H, Rousseaux I, Charpentier C: Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol Lett. 1994, 124: 17-22. 10.1111/j.1574-6968.1994.tb07255.x.
Article
CAS
Google Scholar
Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R: Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog. 2010, 6: e1000939-10.1371/journal.ppat.1000939.
Article
Google Scholar
Pereira FB, Guimaraes PM, Teixeira JA, Domingues L: Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiaeusing statistical experimental designs. Bioresour Technol. 2010,
Google Scholar