Skip to content



Page 35 of 38

  1. Content type: Research

    Pure bacterial strains give better yields when producing H2 than mixed, natural communities. However the main drawback with the pure cultures is the need to perform the fermentations under sterile conditions. The...

    Authors: Julien Masset, Magdalena Calusinska, Christopher Hamilton, Serge Hiligsmann, Bernard Joris, Annick Wilmotte and Philippe Thonart

    Citation: Biotechnology for Biofuels 2012 5:35

    Published on:

  2. Content type: Research

    The concerted effects of changes in gene expression due to changes in the environment are ultimately reflected in the metabolome. Dynamics of metabolite concentrations under a certain condition can therefore g...

    Authors: Basti Bergdahl, Dominik Heer, Uwe Sauer, Bärbel Hahn-Hägerdal and Ed WJ van Niel

    Citation: Biotechnology for Biofuels 2012 5:34

    Published on:

  3. Content type: Research

    The desulphurization of dibenzothiophene (DBT), a recalcitrant thiophenic fossil fuel component by Serratia marcescens (UCP 1549) in order for reducing the Sulphur content was investigated. The Study was carried ...

    Authors: HélviaW Casullo de Araújo, Marta Cristina de Freitas Siva, Clarissai Matos Lins, Aline Elesbão do Nascimento, CarlosAlberto Alves da Silva and Galba M Campos-Takaki

    Citation: Biotechnology for Biofuels 2012 5:33

    Published on:

  4. Content type: Research

    One of the crucial factors for a sustainable and economical production of lignocellulosic based bioethanol is the availability of a robust fermenting microorganism with high tolerance to inhibitors generated d...

    Authors: Rakesh Koppram, Eva Albers and Lisbeth Olsson

    Citation: Biotechnology for Biofuels 2012 5:32

    Published on:

  5. Content type: Research

    β-Glucosidase is an important component of the cellulase enzyme system. It does not only participate in cellulose degradation, it also plays an important role in hydrolyzing cellulose to fermentable glucose by...

    Authors: Jianjun Pei, Qian Pang, Linguo Zhao, Song Fan and Hao Shi

    Citation: Biotechnology for Biofuels 2012 5:31

    Published on:

  6. Content type: Research

    The microbial bioemulsifiers was surface active compounds, are more effective in stabilizing oil-in-water emulsions. The yeasts have been isolated to produce bioemulsifiers from vegetable oils and industrial w...

    Authors: Andrea de Souza Monteiro, Vitor Souza Domingues, Marcus VD Souza, Ivana Lula, Daniel Bonoto Gonçalves, Ezequias Pessoa de Siqueira and Vera Lúcia dos Santos

    Citation: Biotechnology for Biofuels 2012 5:29

    Published on:

  7. Content type: Methodology

    A major challenge in the identification and development of superior feedstocks for the production of second generation biofuels is the rapid assessment of biomass composition in a large number of samples. Curr...

    Authors: German Muttoni, James M Johnson, Nicholas Santoro, Craig J Rhiner, Karl J Haro von Mogel, Shawn M Kaeppler and Natalia de Leon

    Citation: Biotechnology for Biofuels 2012 5:27

    Published on:

  8. Content type: Research

    The recent discovery of accessory proteins that boost cellulose hydrolysis has increased the economical and technical efficiency of processing cellulose to bioethanol. Oxidative enzymes (e.g. GH61) present in ...

    Authors: David Cannella, Chia-wen C Hsieh, Claus Felby and Henning Jørgensen

    Citation: Biotechnology for Biofuels 2012 5:26

    Published on:

  9. Content type: Research

    Cellulose, which is the most abundant renewable biomass on earth, is a potential bio-resource of alternative energy. The hydrolysis of plant polysaccharides is catalyzed by microbial cellulases, including endo...

    Authors: Hsin-Liang Chen, Yo-Chia Chen, Mei-Yeh Jade Lu, Jui-Jen Chang, Hiaow-Ting Christine Wang, Huei-Mien Ke, Tzi-Yuan Wang, Sz-Kai Ruan, Tao-Yuan Wang, Kuo-Yen Hung, Hsing-Yi Cho, Wan-Ting Lin, Ming-Che Shih and Wen-Hsiung Li

    Citation: Biotechnology for Biofuels 2012 5:24

    Published on:

  10. Content type: Research

    Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic (TE) mode...

    Authors: Kristin J Vicari, Sai Sandeep Tallam, Tatyana Shatova, Koh Kang Joo, Christopher J Scarlata, David Humbird, Edward J Wolfrum and Gregg T Beckham

    Citation: Biotechnology for Biofuels 2012 5:23

    Published on:

  11. Content type: Research

    Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process i...

    Authors: Stefano Macrelli, Johan Mogensen and Guido Zacchi

    Citation: Biotechnology for Biofuels 2012 5:22

    Published on:

  12. Content type: Research

    Cellulose consisting of arrays of linear beta-1,4 linked glucans, is the most abundant carbon-containing polymer present in biomass. Recalcitrance of crystalline cellulose towards enzymatic degradation is wide...

    Authors: Fernando Segato, André R L Damasio, Thiago Augusto Gonçalves, Mario T Murakami, Fabio M Squina, MariadeLourdesTM Polizeli, Andrew J Mort and Rolf A Prade

    Citation: Biotechnology for Biofuels 2012 5:21

    Published on:

  13. Content type: Research

    Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in b...

    Authors: Hui Wei, Melvin P Tucker, John O Baker, Michelle Harris, Yonghua Luo, Qi Xu, Michael E Himmel and Shi-You Ding

    Citation: Biotechnology for Biofuels 2012 5:20

    Published on:

  14. Content type: Research

    Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and l...

    Authors: Youjun Zhang, Laura Yu, Ka-Fu Yung, Dennis YC Leung, Feng Sun and Boon L Lim

    Citation: Biotechnology for Biofuels 2012 5:19

    Published on:

  15. Content type: Research

    Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its in...

    Authors: Anping Lei, Huan Chen, Guoming Shen, Zhangli Hu, Lei Chen and Jiangxin Wang

    Citation: Biotechnology for Biofuels 2012 5:18

    Published on:

  16. Content type: Research

    Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules h...

    Authors: Qianqian Gao, Weihua Wang, Hui Zhao and Xuefeng Lu

    Citation: Biotechnology for Biofuels 2012 5:17

    Published on:

  17. Content type: Research

    Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has se...

    Authors: Rishi Gupta, Sanjay Kumar, James Gomes and Ramesh Chander Kuhad

    Citation: Biotechnology for Biofuels 2012 5:16

    Published on:

  18. Content type: Research

    The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important...

    Authors: Borbála Erdei, Balázs Frankó, Mats Galbe and Guido Zacchi

    Citation: Biotechnology for Biofuels 2012 5:12

    Published on:

  19. Content type: Research

    Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chem...

    Authors: Jing Qu, Hui-Zhu Mao, Wen Chen, Shi-Qiang Gao, Ya-Nan Bai, Yan-Wei Sun, Yun-Feng Geng and Jian Ye

    Citation: Biotechnology for Biofuels 2012 5:10

    Published on:

  20. Content type: Research

    An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial...

    Authors: Hélène Billard, Abdelaziz Faraj, Nicolas Lopes Ferreira, Sandra Menir and Senta Heiss-Blanquet

    Citation: Biotechnology for Biofuels 2012 5:9

    Published on:

  21. Content type: Research

    Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylo...

    Authors: Xiaowen Chen, Joseph Shekiro, Mary Ann Franden, Wei Wang, Min Zhang, Erik Kuhn, David K Johnson and Melvin P Tucker

    Citation: Biotechnology for Biofuels 2012 5:8

    Published on:

  22. Content type: Research

    Wax ester synthases (WSs) can synthesize wax esters from alcohols and fatty acyl coenzyme A thioesters. The knowledge of the preferred substrates for each WS allows the use of yeast cells for the production of...

    Authors: Shuobo Shi, Juan Octavio Valle-Rodríguez, Sakda Khoomrung, Verena Siewers and Jens Nielsen

    Citation: Biotechnology for Biofuels 2012 5:7

    Published on:

  23. Content type: Research

    Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of...

    Authors: Angela A Abreu, Dimitar Karakashev, Irini Angelidaki, Diana Z Sousa and M Madalena Alves

    Citation: Biotechnology for Biofuels 2012 5:6

    Published on:

  24. Content type: Research

    There is currently considerable interest in developing renewable sources of energy. One strategy is the biological conversion of plant biomass to liquid transportation fuel. Several technical hurdles impinge u...

    Authors: Scott J Lee, Thomas A Warnick, Sivakumar Pattathil, Jesús G Alvelo-Maurosa, Michelle J Serapiglia, Heather McCormick, Virginia Brown, Naomi F Young, Danny J Schnell, Lawrence B Smart, Michael G Hahn, Jeffrey F Pedersen, Susan B Leschine and Samuel P Hazen

    Citation: Biotechnology for Biofuels 2012 5:5

    Published on:

  25. Content type: Research

    Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strate...

    Authors: Chao Huang, Hong Wu, Zong-jun Liu, Jun Cai, Wen-yong Lou and Min-hua Zong

    Citation: Biotechnology for Biofuels 2012 5:4

    Published on:

  26. Content type: Research

    Improving the hydrolytic performance of hemicellulases on lignocellulosic biomass is of considerable importance for second-generation biorefining. To address this problem, and also to gain greater understandin...

    Authors: Letian Song, Béatrice Siguier, Claire Dumon, Sophie Bozonnet and Michael J O'Donohue

    Citation: Biotechnology for Biofuels 2012 5:3

    Published on:

  27. Content type: Research

    The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose an...

    Authors: Yongchao Li, Timothy J Tschaplinski, Nancy L Engle, Choo Y Hamilton, Miguel Rodriguez Jr, James C Liao, Christopher W Schadt, Adam M Guss, Yunfeng Yang and David E Graham

    Citation: Biotechnology for Biofuels 2012 5:2

    Published on:

  28. Content type: Research

    The ascomycete fungus, Trichoderma reesei (anamorph of Hypocrea jecorina), represents a biotechnological workhorse and is currently one of the most proficient cellulase producers. While strain improvement was tra...

    Authors: André Schuster, Kenneth S Bruno, James R Collett, Scott E Baker, Bernhard Seiboth, Christian P Kubicek and Monika Schmoll

    Citation: Biotechnology for Biofuels 2012 5:1

    Published on:

  29. Content type: Methodology

    We describe a new selection method based on BODIPY (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) staining, fluorescence activated cell sorting (FACS) and microplate-based isolation of lipid-ric...

    Authors: Hugo Pereira, Luísa Barreira, André Mozes, Cláudia Florindo, Cristina Polo, Catarina V Duarte, Luísa Custódio and João Varela

    Citation: Biotechnology for Biofuels 2011 4:61

    Published on:

  30. Content type: Research

    Due to the complexity of lignocellulosic materials, a complete enzymatic hydrolysis into fermentable sugars requires a variety of cellulolytic and xylanolytic enzymes. Addition of xylanases has been shown to s...

    Authors: Junhua Zhang, Matti Siika-aho, Maija Tenkanen and Liisa Viikari

    Citation: Biotechnology for Biofuels 2011 4:60

    Published on:

  31. Content type: Research

    Contamination of bacteria in large-scale yeast fermentations is a serious problem and a threat to the development of successful biofuel production plants. Huge research efforts have been spent in order to solv...

    Authors: Eva Albers, Emma Johansson, Carl Johan Franzén and Christer Larsson

    Citation: Biotechnology for Biofuels 2011 4:59

    Published on:

  32. Content type: Research

    Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the ...

    Authors: Hong Li Chou, Ziyu Dai, Chia Wen Hsieh and Maurice SB Ku

    Citation: Biotechnology for Biofuels 2011 4:58

    Published on:

  33. Content type: Research

    The optimization of industrial bioethanol production will depend on the rational design and manipulation of industrial strains to improve their robustness against the many stress factors affecting their perfor...

    Authors: Francisco B Pereira, Pedro MR Guimarães, Daniel G Gomes, Nuno P Mira, Miguel C Teixeira, Isabel Sá-Correia and Lucília Domingues

    Citation: Biotechnology for Biofuels 2011 4:57

    Published on:

  34. Content type: Research

    Solid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid. This catalyst had high acid density as characterized by scanning electron microscope...

    Authors: Fei-ling Pua, Zhen Fang, Sarani Zakaria, Feng Guo and Chin-hua Chia

    Citation: Biotechnology for Biofuels 2011 4:56

    Published on:

    The Erratum to this article has been published in Biotechnology for Biofuels 2012 5:66

  35. Content type: Research

    The recalcitrance of lignocellulosic materials is a major limitation for their conversion into fermentable sugars. Lignin depletion in new cultivars or transgenic plants has been identified as a way to diminis...

    Authors: Fernando Masarin, Daniela B Gurpilhares, David CF Baffa, Márcio HP Barbosa, Walter Carvalho, André Ferraz and Adriane MF Milagres

    Citation: Biotechnology for Biofuels 2011 4:55

    Published on:

  36. Content type: Research

    In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane...

    Authors: Camila Alves Rezende, Marisa Aparecida de Lima, Priscila Maziero, Eduardo Ribeiro deAzevedo, Wanius Garcia and Igor Polikarpov

    Citation: Biotechnology for Biofuels 2011 4:54

    Published on:

  37. Content type: Research

    Mixtures of prairie species (mixed prairie species; MPS) have been proposed to offer important advantages as a feedstock for sustainable production of fuels and chemicals. Therefore, understanding the performa...

    Authors: Jaclyn D DeMartini and Charles E Wyman

    Citation: Biotechnology for Biofuels 2011 4:52

    Published on:

  38. Content type: Research

    The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjecte...

    Authors: Severino A Lucena, Leile S Lima, Luís SA Cordeiro Jr, Celso Sant'Anna, Reginaldo Constantino, Patricia Azambuja, Wanderley de Souza, Eloi S Garcia and Fernando A Genta

    Citation: Biotechnology for Biofuels 2011 4:51

    Published on:

  39. Content type: Research

    Lignocellulosic materials have been moved towards the forefront of the biofuel industry as a sustainable resource. However, saccharification and the production of bioproducts derived from plant cell wall bioma...

    Authors: João Paulo L Franco Cairo, Flávia C Leonardo, Thabata M Alvarez, Daniela A Ribeiro, Fernanda Büchli, Ana M Costa-Leonardo, Marcelo F Carazzolle, Fernando F Costa, Adriana F Paes Leme, Gonçalo AG Pereira and Fabio M Squina

    Citation: Biotechnology for Biofuels 2011 4:50

    Published on:

  40. Content type: Research

    Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using ...

    Authors: Gary M Hawkins and Joy Doran-Peterson

    Citation: Biotechnology for Biofuels 2011 4:49

    Published on:

  41. Content type: Research

    Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is know...

    Authors: Hui Wei, Bryon S Donohoe, Todd B Vinzant, Peter N Ciesielski, Wei Wang, Lynn M Gedvilas, Yining Zeng, David K Johnson, Shi-You Ding, Michael E Himmel and Melvin P Tucker

    Citation: Biotechnology for Biofuels 2011 4:48

    Published on:

  42. Content type: Research

    In the normal process of bioethanol production, biomass is transported to integrated large factories for degradation to sugar, fermentation, and recovery of ethanol by distillation. Biomass nutrient loss occur...

    Authors: Hiroko K Kitamoto, Mitsuo Horita, Yimin Cai, Yukiko Shinozaki and Keiji Sakaki

    Citation: Biotechnology for Biofuels 2011 4:46

    Published on: