Randelli F: An integrated analysis of production costs and net energy balance of biofuels. Reg Environ Chang 2009, 9: 221-229. 10.1007/s10113-008-0055-7
Article
Google Scholar
Nevoigt E: Progress in metabolic engineering of Saccharomyces cerevisiae . Microbiol Mol Biol Rev 2008, 72: 379-412. 10.1128/MMBR.00025-07
Article
CAS
Google Scholar
Mielenz JR: Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 2001, 4: 324-329. 10.1016/S1369-5274(00)00211-3
Article
CAS
Google Scholar
Sims RE, Mabee W, Saddler JN, Taylor M: An overview of second generation biofuel technologies. Bioresour Technol 2010, 101: 1570-1580. 10.1016/j.biortech.2009.11.046
Article
CAS
Google Scholar
Sanchez OJ, Cardona CA: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 2008, 99: 5270-5295. 10.1016/j.biortech.2007.11.013
Article
CAS
Google Scholar
Kim S, Dale BE: Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 2004, 26: 361-375. 10.1016/j.biombioe.2003.08.002
Article
Google Scholar
Macrelli S, Mogensen J, Zacchi G: Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol Biofuels 2012, 5: 22. 10.1186/1754-6834-5-22
Article
Google Scholar
Schubert C: Can biofuels finally take center stage? Nat Biotechnol 2006, 24: 777-784. 10.1038/nbt0706-777
Article
CAS
Google Scholar
Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E: Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Applied Microbiol Biotechnol 2010, 87: 1303-1315. 10.1007/s00253-010-2707-z
Article
CAS
Google Scholar
Galbe M, Zacchi G: Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng/Biotechnol 2007, 108: 41-65. 10.1007/10_2007_070
Article
CAS
Google Scholar
Taherzadeh MJ, Karimi K: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 2008, 9: 1621-1651. 10.3390/ijms9091621
Article
CAS
Google Scholar
Jørgensen H, Kristensen JB, Felby C: Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod Biorefin 2007, 1: 119-134. 10.1002/bbb.4
Article
Google Scholar
van Zyl WH, Lynd LR, den Haan R, McBride JE: Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae . Adv Biochem Eng/Biotechnol 2007, 108: 205-235. 10.1007/10_2007_061
Article
CAS
Google Scholar
Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF: Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007, 74: 937-953. 10.1007/s00253-006-0827-2
Article
Google Scholar
Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT: Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 2005, 5: 399-409. 10.1016/j.femsyr.2004.09.010
Article
CAS
Google Scholar
Wahlbom CF, van Zyl WH, Jonsson LJ, Hahn-Hagerdal B, Otero RR: Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 2003, 3: 319-326. 10.1016/S1567-1356(02)00206-4
Article
CAS
Google Scholar
Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G: Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae . Metab Eng 2012, 14: 611-622. 10.1016/j.ymben.2012.07.011
Article
CAS
Google Scholar
Brat D, Boles E, Wiedemann B: Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae . Appl Environ Microbiol 2009, 75: 2304-2311. 10.1128/AEM.02522-08
Article
CAS
Google Scholar
Bettiga M, Hahn-Hagerdal B, Gorwa-Grauslund MF: Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnol Biofuels 2008, 1: 16. 10.1186/1754-6834-1-16
Article
Google Scholar
Larsson S, Nilvebrant NO, Jonsson LJ: Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl Microbiol Biotechnol 2001, 57: 167-174.
Article
CAS
Google Scholar
Larsson S, Cassland P, Jonsson LJ: Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 2001, 67: 1163-1170. 10.1128/AEM.67.3.1163-1170.2001
Article
CAS
Google Scholar
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD: Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1 , GND1 , RPE1 , and TKL1 in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 2006, 71: 339-349. 10.1007/s00253-005-0142-3
Article
CAS
Google Scholar
Hou X, Yao S: Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion. Appl Microbiol Biotechnol 2012, 93: 2591-2601. 10.1007/s00253-011-3693-5
Article
CAS
Google Scholar
Koppram R, Albers E, Olsson L: Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 2012, 5: 32. 10.1186/1754-6834-5-32
Article
CAS
Google Scholar
Olofsson K, Bertilsson M, Liden G: A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 2008, 1: 7. 10.1186/1754-6834-1-7
Article
Google Scholar
Bellissimi E, van Dijken JP, Pronk JT, van Maris AJ: Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 2009, 9: 358-364. 10.1111/j.1567-1364.2009.00487.x
Article
CAS
Google Scholar
Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, et al.: Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 2013, 6: 89. 10.1186/1754-6834-6-89
Article
CAS
Google Scholar
Zheng DQ, Wu XC, Tao XL, Wang PM, Li P, Chi XQ, Li YD, Yan QF, Zhao YH: Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol 2011, 102: 3020-3027. 10.1016/j.biortech.2010.09.122
Article
CAS
Google Scholar
Almeida JR, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae . J Chem Technol Biotechnol 2007, 82: 340-349. 10.1002/jctb.1676
Article
CAS
Google Scholar
Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ: Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour Technol 2010, 101: 3106-3114. 10.1016/j.biortech.2009.12.044
Article
CAS
Google Scholar
St Charles J, Hamilton ML, Petes TD: Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae . Genetics 2010, 186: 537-550. 10.1534/genetics.110.121533
Article
CAS
Google Scholar
Ding MZ, Li BZ, Cheng JS, Yuan YJ: Metabolome analysis of differential responses of diploid and haploid yeast to ethanol stress. OMICS 2010, 14: 553-561. 10.1089/omi.2010.0015
Article
CAS
Google Scholar
Schwartz K, Wenger JW, Dunn B, Sherlock G: APJ1 and GRE3 homologs work in concert to allow growth in xylose in a natural Saccharomyces sensu stricto hybrid yeast. Genetics 2012, 191: 621-632. 10.1534/genetics.112.140053
Article
CAS
Google Scholar
Attfield PV: Stress tolerance: the key to effective strains of industrial baker's yeast. Nat Biotechnol 1997, 15: 1351-1357. 10.1038/nbt1297-1351
Article
CAS
Google Scholar
Zhao XQ, Bai FW: Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 2009, 144: 23-30. 10.1016/j.jbiotec.2009.05.001
Article
CAS
Google Scholar
Borneman AR, Pretorius IS, Chambers PJ: Comparative genomics: a revolutionary tool for wine yeast strain development. Curr Opin Biotech 2013, 24: 192-199. 10.1016/j.copbio.2012.08.006
Article
CAS
Google Scholar
Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hagerdal B, Sauer U: Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 2004, 87: 90-98. 10.1002/bit.20094
Article
CAS
Google Scholar
Sonderegger M, Sauer U: Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 2003, 69: 1990-1998. 10.1128/AEM.69.4.1990-1998.2003
Article
CAS
Google Scholar
Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT: Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 2005, 5: 925-934. 10.1016/j.femsyr.2005.04.004
Article
CAS
Google Scholar
Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ: Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 2009, 75: 907-914. 10.1128/AEM.02268-08
Article
CAS
Google Scholar
Tomas-Pejo E, Ballesteros M, Oliva JM, Olsson L: Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. J Industrial Microbio Biotechnol 2010, 37: 1211-1220. 10.1007/s10295-010-0768-8
Article
CAS
Google Scholar
Zhang W, Geng A: Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnol Biofuels 2012, 5: 46. 10.1186/1754-6834-5-46
Article
CAS
Google Scholar
Almeida JR, Karhumaa K, Bengtsson O, Gorwa-Grauslund MF: Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresour Technol 2009, 100: 3674-3677. 10.1016/j.biortech.2009.02.057
Article
CAS
Google Scholar
Persson P, Larsson S, Jonsson LJ, Nilvebrant NO, Sivik B, Munteanu F, Thorneby L, Gorton L: Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 2002, 79: 694-700. 10.1002/bit.10324
Article
CAS
Google Scholar
Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB: Biomass pretreatment: fundamentals toward application. Biotechnol Adv 2011, 29: 675-685. 10.1016/j.biotechadv.2011.05.005
Article
CAS
Google Scholar
Pretorius IS, Bauer FF: Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotechnol 2002, 20: 426-432. 10.1016/S0167-7799(02)02049-8
Article
CAS
Google Scholar
Yamada R, Tanaka T, Ogino C, Kondo A: Gene copy number and polyploidy on products formation in yeast. Appl Microbiol Biotechnol 2010, 88: 849-857. 10.1007/s00253-010-2850-6
Article
CAS
Google Scholar
Hashimoto S, Aritomi K, Minohara T, Nishizawa Y, Hoshida H, Kashiwagi S, Akada R: Direct mating between diploid sake strains of Saccharomyces cerevisiae . Appl Microbiol Biotechnol 2006, 69: 689-696. 10.1007/s00253-005-0039-1
Article
CAS
Google Scholar
Gerstein AC, Chun HJ, Grant A, Otto SP: Genomic convergence toward diploidy in Saccharomyces cerevisiae . PLoS Genet 2006, 2: e145. 10.1371/journal.pgen.0020145
Article
Google Scholar
Teunissen A, Dumortier F, Gorwa MF, Bauer J, Tanghe A, Loiez A, Smet P, Van Dijck P, Thevelein JM: Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs. Appl Environ Microbiol 2002, 68: 4780-4787. 10.1128/AEM.68.10.4780-4787.2002
Article
CAS
Google Scholar
Marullo P, Mansour C, Dufour M, Albertin W, Sicard D, Bely M, Dubourdieu D: Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. FEMS Yeast Res 2009, 9: 1148-1160. 10.1111/j.1567-1364.2009.00550.x
Article
CAS
Google Scholar
Patnaik R: Engineering complex phenotypes in industrial strains. Biotechnol Prog 2008, 24: 38-47. 10.1021/bp0701214
Article
CAS
Google Scholar
Balat M, Balat H: Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy 2009, 86: 2273-2282. 10.1016/j.apenergy.2009.03.015
Article
CAS
Google Scholar
Bai FW, Anderson WA, Moo-Young M: Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 2008, 26: 89-105. 10.1016/j.biotechadv.2007.09.002
Article
CAS
Google Scholar
Pais TM, Foulquié-Moreno MR, Hubmann G, Duitama J, Swinnen S, Goovaerts A, Yang Y, Dumortier F, Thevelein JM: Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet 2013,9(6):e1003548. 10.1371/journal.pgen.1003548
Article
CAS
Google Scholar
Popolo L, Vanoni M, Alberghina L: Control of the yeast cell cycle by protein synthesis. Exp Cell Res 1982, 142: 69-78. 10.1016/0014-4827(82)90410-4
Article
CAS
Google Scholar
Huxley C, Green ED, Dunham I: Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet 1990, 6: 236.
Article
CAS
Google Scholar
Zaldivar J, Roca C, Le Foll C, Hahn-Hagerdal B, Olsson L: Ethanolic fermentation of acid pre-treated starch industry effluents by recombinant Saccharomyces cerevisiae strains. Bioresour Technol 2005, 96: 1670-1676. 10.1016/j.biortech.2004.12.034
Article
CAS
Google Scholar