Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler D, Dean D: Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998, 62: 775-806.
CAS
Google Scholar
Tojo A, Aizawa K: Dissolution and degradation of Bacillus thuringiensis δ-endotoxin by gut juice protease of the silkworm Bombyx mori. Appl Environ Microbiol. 1983, 45: 576-580.
CAS
Google Scholar
Milne R, Kaplan H: Purification and characterization of a trypsin-like digestive enzyme from spruce budworm (Chroristoneura fumiferana) responsible for the activation of δ-endotoxin from Bacillus thuringiensis. Insect Biochem Mol Biol. 1993, 23: 663-673. 10.1016/0965-1748(93)90040-Y.
Article
CAS
Google Scholar
Knowles BH, Dow JA: The crystal δ‒endotoxins of Bacillus thuringiensis: Models for their mechanism of action on the insect gut. Bioessays. 1993, 15: 469-476. 10.1002/bies.950150706.
Article
CAS
Google Scholar
Sacchi VF, Parenti P, Hanozet GM, Giordana B, Lüthy P, Wolfersberger MG: Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett. 1986, 204: 213-218. 10.1016/0014-5793(86)80814-6.
Article
CAS
Google Scholar
Wolfersberger MG: Neither barium nor calcium prevents the inhibition by Bacillus thuringiensis δ-endotoxin of sodium or potassium gradient dependent amino acid accumulation by tobacco hornworm midgut brush border membrane vesicles. Arch Insect Biochem Physiol. 1989, 12: 267-277. 10.1002/arch.940120406.
Article
CAS
Google Scholar
Barton KA, Whiteley H, Yang N-S: Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 1987, 85: 1103-1109. 10.1104/pp.85.4.1103.
Article
CAS
Google Scholar
Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Montagu MV, Leemans J: Transgenic plants protected from insect attack. Nature. 1987, 328: 33-37. 10.1038/328033a0.
Article
CAS
Google Scholar
Kumar S, Chandra A, Pandey K: Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. J Environ Biol. 2008, 29: 641-653.
CAS
Google Scholar
Kleiner K, Ellis D, McCown B, Raffa K: Field evaluation of transgenic poplar expressing a Bacillus thuringiensis cry1A(a) δ-endotoxin gene against forest tent caterpillar (Lepidoptera: Lasiocampidae) and gypsy moth (Lepidoptera: Lymantriidae) following winter dormancy. Environ Entomol. 1995, 24: 1358-1364.
Article
Google Scholar
McCown B, McCabe D, Russell D, Robison D, Barton K, Raffa K: Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep. 1991, 9: 590-594.
Article
CAS
Google Scholar
Dandekar AM, McGranahan GH, Vail PV, Uratsu SL, Leslie C, Tebbets JS: Low levels of expression of wild type Bacillus thuringiensis var. kurstaki cry1A(c) sequences in transgenic walnut somatic embryos. Plant Sci. 1994, 96: 151-162. 10.1016/0168-9452(94)90232-1.
Article
CAS
Google Scholar
Shin D-I, Podila GK, Huang Y, Karnosky DF: Transgenic larch expressing genes for herbicide and insect resistance. Can J Forest Res. 1994, 24: 2059-2067. 10.1139/x94-264.
Article
Google Scholar
Ellis D, McCabe D, McInnis S, Ramachandran R, Russell D, Wallace K, Martinell B, Roberts D, Raffa K, McCown B: Stable transformation of Picea glauca by particle acceleration. Bio/Technology. 1993, 11: 84-89. 10.1038/nbt0193-84.
Article
CAS
Google Scholar
Peña L, Séguin A: Recent advances in the genetic transformation of trees. Trends Biotechnol. 2001, 19: 500-506. 10.1016/S0167-7799(01)01815-7.
Article
Google Scholar
Tang W, Tian Y: Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified δ-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. J Exp Bot. 2003, 54: 835-844. 10.1093/jxb/erg071.
Article
CAS
Google Scholar
Harcourt R, Kyozuka J, Floyd R, Bateman K, Tanaka H, Decroocq V, Llewellyn D, Zhu X, Peacock W, Dennis E: Insect-and herbicide-resistant transgenic eucalyptus. Mol Breed. 2000, 6: 307-315. 10.1023/A:1009676214328.
Article
CAS
Google Scholar
Génissel A, Leplé J-C, Millet N, Augustin S, Jouanin L, Pilate G: High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp tenebrionis. Mol Breed. 2003, 11: 103-110. 10.1023/A:1022453220496.
Article
Google Scholar
Gubitz GM, Mittelbach M, Trabi M: Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol. 1999, 67: 73-82. 10.1016/S0960-8524(99)00069-3.
Article
CAS
Google Scholar
Datinon B, Glitho A, Tamò M, Amevoin K, Goergen G, Kpindou O: Inventory of major insects of Jatropha curcas L.(Euphorbiaceae) and their natural enemies in Southern Benin. J Agric Biol Sci. 2013, 8: 711-718.
Google Scholar
Grimm C: Evaluation of damage to physic nut (Jatropha curcas) by true bugs. Entomol Exp Appl. 1999, 92: 127-136. 10.1046/j.1570-7458.1999.00532.x.
Article
Google Scholar
Prabhakar M, Prasad Y, Rao G, Venkateswarlu B: A new record of longicorn beetle, Acanthophorus rugiceps, from India as a root borer on physic nut, Jatropha curcas, with a description of life stages, biology, and seasonal dynamics. J Insect Sci. 2012, 12: 141-
Article
Google Scholar
Rodrigues SR, Oliveira HN, Santos W, Abot AR: Biological aspects and damage of Pachycoris torridus on physic nut plants. Bragantia. 2011, 70: 356-360. 10.1590/S0006-87052011000200015.
Article
Google Scholar
Shanker C, Dhyani S: Insect pests of Jatropha curcas L. and the potential for their management. Curr Sci. 2006, 91: 162-163.
Google Scholar
Srinivasa Rao C, Pavani Kumari M, Wani SP, Marimuthu S: Occurrence of black rot in Jatropha curcas L. plantations in India caused by Botryosphaeria dothidea. Curr Sci. 2011, 100: 1547-1549.
Google Scholar
Gao S, Qu J, Chua N-H, Ye J: A new strain of Indian cassava mosaic virus causes a mosaic disease in the biodiesel crop Jatropha curcas. Arch Virol. 2010, 155: 607-612. 10.1007/s00705-010-0625-0.
Article
CAS
Google Scholar
Alford DV: A textbook of agricultural entomology. 1999, Blackwell Science Ltd, 1
Google Scholar
Waterhouse D: The major arthropod pests and weeds of agriculture in Southeast Asia: distribution, importance and origin. 1993, Canberra, Australia: Australian Centre for International Agricultural Research
Google Scholar
Rianti P, Suryobroto B, Atmowidi T: Diversity and effectiveness of insect pollinators of Jatropha curcas L. (Euphorbiaceae). HAYATIJ Biosci. 2010, 17: 38-10.4308/hjb.17.1.38.
Article
Google Scholar
Vakenti J, Campbell C, Madsen H: A strain of fruittree leafroller, Archips argyrospilus (Lepidoptera: Tortricidae), tolerant to azinphos-methyl in an apple orchard region of the Okanagan Valley of British Columbia. Can Entomologist. 1984, 116: 69-73. 10.4039/Ent11669-1.
Article
CAS
Google Scholar
Sorensen A, Falcon L: Comparison of microdroplet and high volume application of Bacillus thuringiensis on pear: suppression of fruit tree leafroller (Archips argyrospilus) and coverage on foliage and fruit. Environ Entomol. 1980, 9: 350-358.
Article
Google Scholar
AliNiazee M: Evaluation of Bacillus thuringiensis against Archips rosanus (Lepidoptera: Tortricidae). Can Entomologist. 1974, 106: 393-398. 10.4039/Ent106393-4.
Article
Google Scholar
Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q, Khush GS, Datta SK: Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis delta-endotoxin. Nat Biotechnol. 2000, 18: 1101-1104. 10.1038/80310.
Article
CAS
Google Scholar
Qiu C, Sangha JS, Song F, Zhou Z, Yin A, Gu K, Tian D, Yang J, Yin Z: Production of marker-free transgenic rice expressing tissue-specific Bt gene. Plant Cell Rep. 2010, 29: 1097-1107. 10.1007/s00299-010-0893-x.
Article
CAS
Google Scholar
Qu J, Mao H-Z, Chen W, Gao S-Q, Bai Y-N, Sun Y-W, Geng Y-F, Ye J: Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels. 2012, 5: 10-10.1186/1754-6834-5-10.
Article
CAS
Google Scholar
Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z: Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep. 2005, 24: 86-94. 10.1007/s00299-004-0909-5.
Article
CAS
Google Scholar
Yin Z, Wang G-L: Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor Appl Genet. 2000, 100: 461-470. 10.1007/s001220050060.
Article
CAS
Google Scholar
Wang Y, Hu H, Huang J, Li J, Liu B, Zhang G: Determination of the movement and persistence of Cry1Ab/1Ac protein released from Bt transgenic rice under field and hydroponic conditions. Soil Biol Biochem. 2013, 58: 107-114.
Article
CAS
Google Scholar
Mao H, Ye J, Chua N: Genetic transformation of Jatropha curcas. International Application No: PCT/SG2009/000479 USA. 2009
Google Scholar
Gu K, Chiam H, Tian D, Yin Z: Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas. Plant Sci. 2011, 180: 642-649. 10.1016/j.plantsci.2011.01.007.
Article
CAS
Google Scholar
Gu K, Yi C, Tian D, Sangha JS, Hong Y, Yin Z: Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas. Biotechnol Biofuels. 2012, 5: 1-15. 10.1186/1754-6834-5-1.
Article
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
Google Scholar